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OVER PART OF ITS SURFACE 

PMM Vo1.41, N”4, 197’7, pp. 716-126 
V. A. BABESHKO and A.N. RUMIANTSEV 

(Rostov- on- Don) 
(Received December 13, 1976) 

The plane problem of harmonic vibrations of a stamp of finite size located 
in the segment [a,, aa] on the surface of an elastic layer of thickness 2h 
is considered; the stamp adheres rigidly to the layer in the segment [a,, 4 
(~1 <a, < ~3) and makes contact without friction on the segment [$,, a,]. 

A system of integral equations is constructed for the mixed problem with 
the necessary physical radiation principles taken into account, its unique sol- 
vability is established and an approximate method of solution is proposed. 
The method is based on applying factorization of functions and matrix - func- 
tions and permits reduction of the system of integral equations of the first 
kind to a system of integral equations of the second kind with a completely 
continuous operator in a certain function space, for which splitting into a 
finite and a small operator is effectively performed. This latter permits 
carrying out a finite approximation of the operator in a numerical applica - 

tion of the method. 
The properties of the solutions of the integral equation, the contact 

stress distribution under the stamp, as well as the nature of the excited sur - 

face waves are studied. The presence of singularities in the contact stresses 
which hold not only on the stamp edge but also in the interior contact domain 

is established. 
This problem is considered in connection with problems of defectoscopy 

of foundations by using vibration in order to clarify the nature of the contact 

with an elastic medium, as well as with the defectoscopy of bonded fits. 

The realization of the most complex situation occurring when using the 
method applied, the approximate factorization of a specific matrix - func - 

tion , is presented as an illustration. 
Static problems for stamps with incomplete separation of the boundary 

conditions were considered in [l , 21 for somewhat different purposes. 

1. To reduce the problem under consideration to integral equations, we solve the 
dynamic Lami equations (with inertial terms) in the domain 1 z 1 < h, - -w < 

x < co under the following boundary conditions: 

z--/h, u=w=o, -oo<x<,= 

2 = J&, u = ug (z), x E [a,, a,1 

w = wg (x), x CZ [a,, a31 
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h -g + (h + 2&g = 0, XE (- 00, al) u ;a2, =) 

(U (5, z, t) = Re [u (z, z) ewio’ I, W (IC, z, t) = Re [w (2, z) e-ia’]) 

Here U and w are, respectively, the tangential and normal displacements in the 
layer h, p are Lam6 coefficients, h is half the layer thickness, and o is the fre- 
quency of stamp vibrations. 

Using the physical principle of limiting absorption [3 ,4], the problem formulated 

above is reduced to a system of integral equations of the form 

(1.1) 

(1.2) 

by the Fourier transform method. 
The elements of the matrix R 

rix K (IL) by the relationships 

(u) are connected to the elements of the real mat- 

R = Kmn, mm - RI, EZ - R,, G ‘K,, (1.3) 

K,, --= 112 xz2 (q sh 2 o2 ch 2 o1 - CT~-~U~ sh 2 crl ch 2 a,) A-l (u) 
K,, = - u { (2 u2 - xz2/2) (‘1 - ch 2 u1 ch 2 a,) + q-lcr,-l x 

[2 u4 - u2 (3/2 x22 + x12) + x12x22l sh 2 IT, sh 2 a,) A-l (u) 
K,, = i/2 xz2 (q sh 2 u1 ch 2 ‘J, - u,%~ sh 2 0, ch 2 uI) A-l (u) 
A (u) = u2 (2 u2 - x2”) - (2 uk - u2x,2 + l/4 x2”) ch 2 ul ch2 a,+ 

u~-lb,-w [2 214 - u2 (2 x22 + Xl”) + X~2X22 + l/4 x241 x 
sh 2 u1 sh 2 u, 

Xl ' = W2f,h2 (h + 2 /_k)-l, %z2 = @2f,h2p-1, uh_ = (u2 - ,tk2)“” 

Here V, p are the Poisson’s ratio and the density of the material, qI (IL’), .q2 (5) are, 
respectively, the tangential and normal contact stresses, fl (x), f2 (x) are given ampli- 
tudes of the tangential and normal displacements of points under the stamp, respectively, 

taken with the factor 4 3tp h. 
The functions K,, (u) in (1.3) are regular everywhere on the real axis with the 

exception of the same poles for all the functions & & (k = 1, 2, . . . , p), Km,,, 
are even, K,, is odd. As 1 u 1 -+ oo the elements of the matrix - function ’ K (u) 
have the form 

K,, (u) = A 1 u 1 -l [I + 0 (u-‘)I, K,, (u) = Bu-l x 
[I + 0 @-‘)I, A > 1 B 1 

The contour r in (1.2) is disposed in conformity with the rules set up in [4- 61. 
Distribution curves of the real poles of elements of the matrix K (u) in (1.3) are 

presented in Fig. 1 for v = 0.3. It is seen that the number of poles increases with the 

increase in frequency (which corresponds to a growth of the parameter x2 1. 

2. At this time no theory has been developed for systems of integral equations of 
the form (1.1). Hence, we present one of the uniqueness criteria for the solution of the 
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system of integral equations (1.1) in the space L, (a,, a,), a > 1, which was succes- 
sfully set up and which always assures uniqueness in specific problems in case the system 
degenerates into one equation. 

Theorem 1. Let functions K,, (U) which have single poles, possess the fol- 
lowing properties : 

1) [Kn-l (&)I > 0, r = 1, 2, . . . , p 

2) [Ku-l (Ml I&,-‘(Sr)l’ - {ML-l (L)l’) a > 0 

3) There exist rational functions P,, (u) bounded at infinity, with poles at the points 
+ Sk (k = 1, 2, . . . , p) such that the real Hermitian component of the matrix 

R (u) P-l (u) is positive definite for any u (- 00 < u < OO) . 
Using the method proposed in [4] under the assumption of single poles of th_e func - 

tions K,, (u) for the proof, we multiply the first equation of the system by q1 (z), 
and the second by qa (z) and integrate over the whole axis for fk (ST) = 0 (the bar 
denotes the complex conjugate). We add the results obtained and deform the contour 

of integration to the real axis. After extraction of the real part and equating it to zero, 
we conclude on the basis conditions I), 2) that 

Qr(&)~Qr(-&)zO, r=f,%...,p; k=1,2 
Qkfl 

Qk (u) = s qk, (z) eiu%Tz 
a1 

4 8 
Fig. 1 

Introducing the functions 
2 

Tn @) = 2 P,, (u) Qs (11) c2. l) 
a=1 

which are the Fourier transforms of 
functions from L, which vanish out- 

side [a,, a,+,], as has been established 
in [5], and determining Q, (u) from 

(2.1) , we insert them into (1.1) . 
Subsequently, the requirement of po - 
sitive - definiteness of the operator in 
the left side of (1.1) results in condi - 
tions 3). 

3, Let us reduce the system of integral equations of the first kind to a system of 
integral equations of the second kind with a completely continuous operator. Let us 
apply to this end the method of factorization of functions and matrix - functions. The 

factorization method permits satisfaction of the discontinuous boundary conditions of 
the boundary value problem. 

The boundary value problem has three points of change of boundary conditions: at 
the point al two boundary conditions change at once, hence, the matrix - function is 
factorized here, and at the points a2 and a, just one boundary condition changes. The 
functions should be factorized at the points mentioned. 

To realize these proposals, we apply a complex Fourier transform to the system 

(1.1). The system consequently takes the form 
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R (u) Q (u) = F + eia@@- + eia4J + (3.1) 

Q (4 = K4, @A, 9x-- = Wiatu 

@-z( j 
a1 

rpleW~-a~)dx, 
!i_ 

cp2eiu+%lz 1 
= {@,-, cP,-) (3.2) 

-0 

(3.3) 

Here 931, ‘Pa is a continuation of the right side of the integral equations (1.1) in the 
domain x < a,. Analogously gr, 9s is the continuation of the right sides of these 
equations in the domains x > as and 11: > as , respectively. 

Having determined these functions, we find the solution Q (u) of the system of 
integral equations from the relationship (3.1). 

Assuming the existence of a solution q (x) = {ql, qz} in the class I;,, it can be 
established that the functions vk, I#~ are bounded at infinity as 1 x 1 -+ 00 by dege- 
nerating into trigonometric polynomials representing waves being radiated. They are 

differentiable in any bounded set, 
In connection with the above the Fourier transforms Q-, VP+ exist on the contour 

I? as limits of the appropriate integrals (3.2) and (3.3) I respectively, from the lower 
and upper half-planes, 

The relationship (3.1) will be equivalent to the system of integral equations (1.1) 
if it is considered on the contour I’ ; in its neighborhood this contour determines a cer - 

tain curvilinear strip fz of the regularity of all the functions of (3.1). Henceforth, all 
the functions will be factorized relative to contours located in S? , particularly with 

respect to the contour I?. 

We shall assume the following factorizations to be satisfied: 

R (u) = K+K_ = N-N, (3.4) 

Kr1 + K,,K,,~K,, = C (~1 = C,.C. (3.5) 
Ks, (U) = n+n_ 

Let us later introduce the following notation for the function g (u) which is regu - 
lar in Q and decreases by a power - law at infinity: 

u above I’, 

{g}- = --!- \ &dlZ, 2ni ubelow I’+ 

r+ 

The contours I’_ and r+ lie, respectively, below and above the contour I’ in Sz . 
As is known, the operations ( }+, { }- d enote the projection of an analytic 

function in the region above (E+)and below (E_) the contour r , respectively. 
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Now we multiply the relationship (3.1) by the matrix e-iualK? and we project 
the result on E_. We arrive at a relationship of the form 

K--l@- + {e-i~~lK_-lF}- + {K_-leiu(a,-a,)~+}- = 0 (3.6) 

Eliminating the function Q2 from the system (3.1) , dividing the result by eidzUCt 
and after making a projection on E,, E_ , we obtain, respectively, 

(3.7) 

Finally, dividing the second equation of the system (3.1) by eiuaS n+ and pro- 
jecting the result on E,, we obtain a relationship of the form 

Let us introduce new unknowns by setting 

X- = K-W?- = {Xl--, X,-}, X+ = V’+II+-l = {X3+, X,‘} 
Ql-C_ = X, 

The relationships (3.6) - (3.8) are a closed system relative to the unknowns X,*. 
Let us reduce this system to equations of the second kind with a completely continuous 

operator. To this end, let us represent the system in the form 

X- + { K_-lei~(a~-a~) n+X+)- + {e-imtK_-lF}- = 0 

$ X,+ + { Dei(%-%W X,+T]i+}- _ DeWaa-Qr) X,+n+ + 

(3.8) 

e-i’;;a”u (kllX1- + k,,X,-)I+ - 
{De-i(a+du (kzlxl- + kz2x2-))+ + {(+ - DF2) e-iaz”]+ = () 

Here k,, are elements of the matrix K._ (u). 
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Transferring all the integral terms of the system (3.9) to the right side and solving 
the linear system in the left side for Xkf, we arrive at a system of the second hind with 
a completely continuous operator. 

4, Under the assumption of existence of a solution we establish the properties of 
the solutions of the system (3.9) and of the system (1.1) as well. We shall consider 
the right sides fr (z) and fs {.z) of the integral equations (1.1) to belong to Cs in 

Ial, asl and Ial, a,] , respectively. In this case, certain continuations of the time - 
tions fl, fa have Fourier transforms F,, F2 which decrease at infinity as ?kma [7 1. 
The behavior of the free terms of the system (3.9) is set in the neighborhood of infini- 
ty on any contour in the region 8 by using this estimate. Namely, the free terms on 
any of the mentioned contours belong to the space c (1); here c (A) is the space of 

functions which is continuous with the weight ] z 1 A on the contour. 
Studying (3.3) in the space c (h), h < 1, we conclude that if solutions of the sys- 

tem exist, then they possess the properties: Xkf E c (1). Hence, @-, Y+ E c (V2); 
Q1- EC (Y$ Using these properties, we obtain the following series repr~entations of 

the functions in the neighborhood of infinity by using (3.6) (3.8): 

Applying the inverse Fourier transform, we establish the following properties for 

the functions qk on the basis of these estimates: 

q1 (z.r) (z - ap+*a (a, - c&y* E c (a,, aa> 

Qs (22) (Z - CZr)*‘*+“L 1 Ua - 5 ]“* (U, - Z)“’ E C (al, Us) 
(4.1) 

1, e., & E .?& the uniqueness space. Hence , single-valued solvability of the system 
(3.9) and therefore of the system (I. 1) in the class (4.1) follows for arbitrary right 

sides fi, fa E C,. 

6. To construct an approximate solution of the system of integral equations (3.9), 
let us note the following: since the operators on the left side are completely continuous 

Fredholm operators, then the solution of the system can be written in the form of a 

Fredholm series by using the apparatus of exterior analysis [SJ. Truncating this series 
yields an approximate solution of the problem. The complexity in using this approach 

is the problem of evaluating the multiple integrals. 
Another approximate approach is to reduce the Fredholm system to an algebraic 

system of linear equations [Q] in conjuction with an approximate method of factorizing 
the functions and matrix-functions. It is hence assumed that by realizing the approxi - 
mate factorization of the functions and matrix-functions by using irrational functions, 
a natural approximation of the Fredholm integral operators by fin~te-~~~l ope - 
rators is carried out. This approximation is realized by dropping the contours of inte- 
gration in the integral operators { }’ and raising the contours in the operators{ )-. 
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In the process of these operations, when the poles intersect during contour motion, split- 
ting of the operator into a finite-dimensional operator and a small operator occurs 

(smallness is achieved by remoteness of the branch point to which the contour is shifted, 
and by the presence of the damping exponentials) . Neglecting the small operator, we 
obtain the finite-dimensional approximation. 

Let us demonstrate this with an example of the last equation in the system (3.9). 

Let hll, (k = 1, 2, . . . , rl), 3L2k (k = 1, 2, . . . , rJ, 3LSk (k =I, 2, . . . , r,) 
denote, respectively, the poles of the functions k12rI+-1, k,,II+-l and iKsrn+-‘. We 

obtain 

x,’ (2) - 2 e-*‘as--ai’hlk &Sk (kl&+-1) xl- (hlk) - 
k=l 'lk - ’ 

(5.1) 

r2 

c e 
---i(ar--a1)A2)r 

‘2k - ’ 
Res (k2JI+-‘) X2- (bk) - 

k=l Z’AZlc 

7.3 

c --i(%---adh~k 

Res (iK21n+-l) X5- &Sk) tkfk _ z) C_ (hsk) 
+ D4(z) = ’ 

r=h 
k=l 3k 

Here Dq (z) is the approximation of the last term on the left side of the equation under 
consideration. The remaining equations of the system (3.9) can be transformed in an 

analogous manner. 

It is seen from (5.1) that it is sufficient to know the values X1-, X2-, X5- at 

the points hik (i = 1, 2, 3) , respectively , for an approximate determination of X4+ 

(2). Setting z = ai& in the ,appropriate equations of the system obtained from (3.9) by 
the method described above, and acting in a similar manner, we obtain a closed system 
of linear algebraic equations by starting from the necessity to determine X,* (k = 1, 
2, 3, 5). Having determined Xk*, we find CD-and Y+and then Q from (3.1). 

To investigate the behavior of the surface outside the stamp, it is sufficient to eva- 

luate the complex Fourier inversion for the functions a- and UT+. 
The behavior of the layer surface in the far zone is computed sufficiently simply in 

connection with the following representation of the functions @- and v+: 

c&-z p c 
k=l 

*+x1,(2), 

Here the functions Xin, Xsrr are regular in the domains Im z < a,,, and Im z > 6,, 
@ikrr > 0) , respectively. We obtain the following representations for Ok- (x), &+ (a$ 
as a result of the inversion: 

(Pk- (5) = 2ni 5 c&e-i6S” + 0 (esikF), z -_, - CO 
s=1 

?#)r+ (x) = - hiti s$l dgkei*bgX + 0 (e-‘“), X--r00 

6. The most complicated part in the application of this approximate method is 
the construction of an approximate factorization of the functions and the matrix-func- 

tions . After execution of this problem, the further solution is not difficult. 
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In conformity with the general theorems elucidated in [lo], the conditions imposed 
above on the matrix R (u) assure its factorization into the form (3.4). However, it is 

impossible to obtain an explicit form for the matrices K* (u) and N, (u) . Hence, we 
apply the approximate factorization [ll] , which is realized only by using a digital com- 
puter , 

The following theorem, whose proof based on the method of perturbations is omitted 
for the sake of brevity, is the basis for the application of approximate factorization of 

the matrix - functions. 

Theorem 2. Let the system of equations (1.1) with the matrix-kernel K (u) 
have the solution g = {qi, qs}, and with the matrix K* (u) the solution q* = {ql*, 
qz”). If the elements Kij (u) and Kij* (u) of the matrices K (u) and K* (u) 

satisfy the conditions 

1 Kij (u) - Kij* (u) 11 Kij (u) I-’ (1 + 1 u I)” < 8, cz > YZ 

under the conditions of Theorem 1, then the inequality 

I h (4 - !h* (41 VI a3 - 5 I I a‘2 - 2 I I a1 - z I I < m e 
iS valid for sufficiently small E , where ?n is independent of qk. 

Let us introduce the functionally commutative matrix G (u) with elements 
G,, (u) of the form G,, = G,, = Kll, G1, = - Gzl = iK,,. The matrix G (u) 
is factorized explicitly [ll] 

G (u) = G, (u) G- (u) - G_ (u) G, (n) (6.1) 

2G11’ (u) = 2 G,,t- (u) = se (u) + tk (u), 2 G,,* (u) = 
- 2 G,,* (u) = i [t, (u) - .q (u) 

s+s_ = K11 - Km t+c. = K,, + K,, 

We factorize (6.1) approximately. We examine the factorization of a function 
s (u) = K,, + K1, by using an approximating function S* (u) selected to accura- 

cy e from the condition 

I s 04 - s* (u) I / I s (4 I < E (6.2) 
Let z,+>O (s= 1,2, . . . , n,) and zk-<o (k = 1,2, , . ., n,) are 

the zeroes of the function S (u). Without limiting the generality, we can consider 
n, = n2 = n, where n < p. We form a function which has no real zeroes and poles 

s1 (u) = s (u) (Al2 + U2FN R, (u) u, (u) (6.3) 

Here 

R,(u) = (;:?;)%xp(- flIlq&Irctg +) x 
N P n 

n (u” + E:) n (u” - ck2) n (u - z,+)-l(u - 2,‘)~1 
S==l k=l s=1 

II, n=p 
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Here b > ‘l in (6.3) is a previously assigned parameter of the approximation, 
Together with the parameter A, > 0 , the quantities & > 0 (k = 1, 2, . . . , N) 
and V, > 0 (k = 1, 2, . . ., p - n) ace additional parameters of the approxima - 
tion which satisfy condition (6.2) of least deviation of ,‘j’* (u) from 8 (u) on the real 

axis; S,(u)-1 as IUI--+oo. 

For uniqueness of the function S1 (u) we draw a slit from bi to i 00 and from 
- bi to - i 30 and we fix the branch by the condition VF = b > 0. After the 

subst~~tion z = ~z/(~~ + Ai2), which converts the positive half-axis into the segment 

[O, $1, we approximate the function S, (A, f/d(l - 2)) by Bernshtein polynomials 

BN (2) of degree 2N. We obtain 

S” (u) = T2ri (u) [R, (u)]-’ UT” (u) (6.4) 

since BN (u2/(~’ i- A12)) is a rational function, whose denominator is the polynomial 
(u” i_ Ala)N and the numerator is apolynomial rs, (u) of order 2 N. 

Now taking into account that 

exp $ln 
( 

AS-B 
A _ B arc& +)=(+$$~y; r:-----&-In-$&+ 

S* (u) can be factorized explicitly. The function RI1 ---SC,, is factorized analogou- 

sly. 
Let us introduce the matrix 

II (u) = G--l (u) R (u) G+-l (u) (6.5) 

Its elements have the form 

H,, = 1 + 8 (K11 - L’), Hs, I- 1 + 8 (R,, + r;+> 
H,, = - it3 (K,, -+- L-), Hsl = i0 (K,, - L-) 

(9 = V2 (K,, - K,Jdet G (u), L* = 1/Z (s+t_ & s-t,)) 

If the roots of the approximating polynomial TZN (u) equal ak, Eik (k = 1, 2, . 

* . f N), then we obtain on the basis of (6.4) 

{Q ft.2 - (2,+)2] 6 (u” - cQ)(b2 + u2)iy i_ fi [a2 - @,-)‘I x 
ICE1 s=1 

N 

n (2 - Gk--Z)(b” + zP,+} U;’ (u) 
k-l 

Hence, it is seen that if there are no real roots for the function &’ (u) or they are 
located symme~ically relative to the origin I thenH~~(~) and H,, (u) are real on the 
real axis and HI, (u) and H,, (u) are complex conjugates. 

The relationships 

H mm = 1 + 0 (u-l), H,,, = 0 (u&l), m =#= n 
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evidently hold as 1 a 1 -+ 00 . 
Let us approximate the elements of the matrix H (u) by rational functions by 

using Bemshtein polynomials according to the scheme represented above for the func- 

tion S (u). We shall hence select the approximation parameters from the condition of 
smallness of the difference between the absolute values of the matrix elements of H (u) 
and the approximating functions with respect to 1 det H (u) J on the real axis. We 
obtain the matrix PI* (u) with elements of the form 

(6.6) 

Here Q are approximation parameters, and t, are positive poles of elements of the 
matrix H (u) (the same for all the elements). The degree of the polynomial VI, (u), 
vss (U) is one higher than the degree of the polynomials VI, (u) and V,, (u). 

To factorize H* (u) it is sufficient to factorize the matrix V (u) with the ele- 
ments Vi, (u). As is known [12], the matrix V (u) can be represented in the form 

v (U) = x (u) w (u) Y (u) (6.7) 

where X (u) and Y (u) are polynomial matrices with constant nonzero determinant, 
and W (a) is a diagonal matrix factorizable explicitly. 

Therefore, taking (6.5) - (6.7) into account, we find 

-&- w+ Q-4 y 64 G, (u) 

The second approximate factorization of (3.4) is constructed analogously. 
As an illustration, let us consider the approximate factorization of the matrixR(u) 

for x,=*.25, b=10.0, v=O.3. In this case there exists one positive pole pi= 0.5759 
for the matrix elements of R(u). 

The function S(u)=Kn( U) + Kr,(u) is approximated well by using the eighth po- 

wer polynomial T(u) with the roots: 0.689 & 1.034i, -0.254 -I_ 0.854 i, -0.069 + 

2.186i, 0.478 f 7.4373. For the approximation u,=O.S, F,r=1.20, &=1.25, &+=I.OO, 
&=3.50, A,=1.100. 

The auxiliary matrix B(u) has the positive pole t,=O.4995, The elements H,,(u) 

and H&U) have no real zeros, but there is one zero rr=O.7043 on the positive half - 
axis for the element HI,(u) . 

In approximating the elements of the matrix H(u) by using fourth power polynomials, 
the error in approximating H,,(u) does not exceed 8%. 2% for HZ2(u) and 11% for HI*(U). 
Hence lI=0.05, ~=1.20. Consequently, we obtain the diagonal matrix W(u) whose 
diagonal elements are: unity and the polynomial w(u), where 

w(u) = b (Us---al;)-) 
k=l 

a,=0.075, a,=0.44%, a9=0.146 + 0.073i 

a,=O.146-O.O73i, a,=1.2081, ae =I.4472 
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The polynomial matrices X(u) and Y(u) have determinants equal to unity. The 
elements Xmn have the form 

X,,=ua+i.67 u* +2.38~1O-W+O.719.10-’ 
1O-PX1,=O.613iu6-O.137u4+1.O2ius-O.23Ou2+O.O152iu-O.OO548; 
X,,=-O.186iu6+O.313u4+O.O8O4iu3-O.158u2+O.OO582iu+O.OO159 
10~SX,,=0.114u4+0.217iu3-0.0919u2-0.108iu+0.0176 

The matrix Y(u) has the elements 
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